Terminology: Basic terms of disaster risk reduction

International Strategy for Disaster Reduction
Terminology of disaster risk reduction

(Risk) Prevention:
Activities to provide outright avoidance of the adverse impact of hazards and means to minimize related environmental, technological and biological disasters.

Depending on social and technical feasibility and cost/benefit considerations, investing in preventive measures is justified in areas frequently affected by disasters. In the context of public awareness and education, related to disaster risk reduction changing attitudes and behaviour contribute to promoting a "culture of prevention".
All the prevention activities are formulated within an open-ended process: the Emergency Management Cycle.

Response:
The provision of assistance or intervention during or immediately after a disaster to meet the life preservation and basic subsistence needs of those people affected.

Recovery:
Decisions and actions taken after a disaster with a view to restoring or improving the pre-disaster living conditions of the stricken community, while encouraging and facilitating necessary adjustments to reduce disaster risk.

Recovery (rehabilitation and reconstruction) affords an opportunity to develop and apply disaster risk reduction measures.
Preparedness:
Activities and measures taken in advance to ensure effective response to the impact of hazards, including the issuance of timely and effective early warnings and the temporary evacuation of people and property from threatened locations.

Mitigation:
Structural and non-structural measures undertaken to limit the adverse impact of natural hazards, environmental degradation and technological hazards.

International Strategy for Disaster Reduction
Terminology of disaster risk reduction

Structural / non-structural measures
Structural measures refer to any physical construction to reduce or avoid possible impacts of hazards, which include engineering measures and construction of hazard-resistant and protective structures and infrastructure.

Non-structural measures refer to policies, awareness, knowledge development, public commitment, and methods and operating practices, including participatory mechanisms and the provision of information, which can reduce risk and related impacts.
Quite always the physical construction requires to establish policies, to raise awareness, to develop the knowledge, and to define operating practices, in advance.

Structural and non structural measures are strongly interconnected.

An example:
The retrofit of the 100 most risky schools

Risk is the convolution of
Hazard * Vulnerability * Exposure

Structural measures mitigate the risk throughout the reduction of the vulnerability
When are structural measures implemented within the EMC?

| Immediate risk removal (propping, shoring, ...) | Very often |
| Normal-time repair and strengthening | Almost never |

In the following we will focus on risk mitigation programs involving a large number of buildings.

Single building mitigation will not be addressed, but many concepts apply as well.

Large scale programs require massive financial investments and produce benefits in the long term, so that public authorities are in charge of mitigating building risk in the public and in the private sector as well.
Risk mitigation strategies

1. Improving standards for new buildings and infrastructures
 - Seismic code
 - Seismic hazard
 - Microzonation
 - Land use & Urban planning
 - Controls

2. Strengthening existing buildings and infrastructures
 - Peace time strengthening (10-30 year programs)
 - Post-earthquake strengthening (3-5 year programs)

Cost of the mitigation strategies (buildings)

1. Improving standards for new buildings and infrastructures

 - Cost of the structure: 25-30% of total construction cost
 - Increase of the structural cost for increased seismic capacity: +20%-30% of the structural cost
 - Increase of total cost: 5%-10%
Cost of the mitigation strategies (buildings)

2. Strengthening existing buildings
 from 150 to 500 Euro per square meter
 approx 15-40% of total construction costs

Strengthening existing building is much more costly than building seismic resistant buildings

This is the first reason why the strengthening of a large number of existing buildings is seldom implemented

Political payback

1: Building new construction
 immediate, within one legislature

2: Strengthening existing buildings
 10-30 years, maybe never

This is the second and more important reason why the strengthening of a large number of existing building is seldom implemented
There are also other minor reasons:

There are much more existing buildings than new construction. This imply an overall larger cost

Seismic codes for existing buildings are less detailed and reliable

Professionals have lower skill on existing buildings than in new buildings

The building materials and detailing are usually not known and cannot be known even after a large number of in situ tests.

Post earthquake strengthening (Italian experience)

<table>
<thead>
<tr>
<th>Year</th>
<th>Location</th>
<th>Intensity</th>
<th>Financial contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>Irpinia</td>
<td>IX-X</td>
<td>30,000</td>
</tr>
<tr>
<td>1996</td>
<td>Novellara</td>
<td>VII</td>
<td>120</td>
</tr>
<tr>
<td>1997</td>
<td>Umbria-Marche</td>
<td>VIII-IX</td>
<td>12,000</td>
</tr>
<tr>
<td>1997-8</td>
<td>Rieti</td>
<td>V-VI</td>
<td>100</td>
</tr>
<tr>
<td>1998</td>
<td>Pollino</td>
<td>VI-VII</td>
<td>500</td>
</tr>
<tr>
<td>2000</td>
<td>Canterano</td>
<td>VI</td>
<td>30</td>
</tr>
</tbody>
</table>

Governmental financial contribution in million Euro
Building strengthening in developing countries

Transfer of knowledge in design

Transfer of knowledge in construction practices

Low cost & effective interventions

Main items in the program establishment

1. The conception
 Aim, overall funding, time, type of building to be addressed

2. The overall strategy
 Priorities, individual costs, safety level to be achieved, ...

3. The implementation
 Administrative procedures and technical guidelines
 Special offices devoted to the program
1. The conception of the program

When?

Usually (always ?) after destructive events, when the society is devastated and the risk is highly perceived.

S. Giuliano di Puglia
Molise 2002
eqk - M=5.4

The collapsed school
S. Giuliano di Puglia
Molise 2002
eqk - M=5.4

1900 1920 1940 1960 1980 2000 2020
Year

Number of Municipalities in seismic area

1908 Messina
1915 Avezzano
1980 Irpinia
2002 Molise

1984 2002
1. The conception of the program: Building types to be addressed

Building use to be addressed
- Strategic (Hospital, California)
- Relevant in case of collapse (School, Italy)
- Residential (Umbria Region, Sicily, Italy)

2. The overall strategy: costs and safety level to be achieved

The cost of strengthening an existing building may be very high. An analysis is required in deciding whether to strengthen or demolish and rebuild.

What level of protection the society (or an individual owner) should demand?

Costs depend on the safety level achieved after the intervention works. Hence the decision whether to strengthen or demolish and rebuild is based on the accepted risk after the intervention.
In practice three approaches are possible:

1. Full retrofitting: The building after the intervention complies with the code for new buildings. Very costly, a lower number of buildings can be addressed.

2. Upgrading: the intervention works have to increase, even slightly, the building capacity. Less costly, a greater number of buildings can be addressed, but it is not guaranteed that the safety level achieved is above some standard.

3. Upgrading with a predetermined safety level, lower than the one for new buildings. Intermediate situation.

The three approaches can be summarized, introducing one parameter:

$$\alpha = \frac{\text{capacity of the strengthened building}}{\text{capacity of a new building}}$$

Full retrofitting: $\alpha = 1$

Upgrading: $\alpha > \alpha_o$

Upgrading with a predetermined safety level, $\alpha > \alpha^*$
In the recent Italian experience

National school seismic safety program $\alpha > 0.65$

National plan for the seismic assessment of strategic buildings and first intervention depends from Regions

In Latium Region $\alpha = 1.00$

Reconstruction after 1980 Irpinia eqk $\alpha = 1.00$
Reconstruction after 1997 Umbria-Marche eqk $\alpha > 0.65$
Reconstruction after 1987-98 Rieti eqk $\alpha > 0.50$

A value greater than 0.5 should be used and possibly also greater than 2/3

2. The overall strategy: costs and safety level to be achieved

Selection among different strategies is based on cost-benefit analysis

If the considered cost is the only economic cost of the building repair (direct losses), than the mitigation strategy has a positive benefit only in high seismic areas

If the considered generalized cost include also the business disruption or the loss of human life (indirect losses), than mitigation always pays.
One useful parameter is the marginal cost per saved life

\[
\text{Cost} = \text{Building value (constant)} + \text{Present value of the intervention costs} + \text{Present value of direct and indirect costs in case of event}
\]

High seismic resistance \rightarrow high number of saved life \rightarrow higher costs

Low seismic resistance \rightarrow low number of saved life \rightarrow lower costs

The marginal cost per saved life curve is an increasing function of the seismic resistance

If the cost of the mitigation strategy has been already established, selecting the buildings with the lower cost per saved life, assure the maximum reduction in victims.

Usually the low cost interventions are the ones that can save lives with lower payback period.
An interesting solution is targeting the most vulnerable buildings, identifying the “killer” buildings.

Study after Mexico city eqk
Sample area High occupancy buildings
Strategy I: Worst 8% strengthened
 50% reduction in fatalities
 5000$ cost per saved live

Strategy II: Worst 18% strengthened
 80% reduction in fatalities
 7000$ cost per saved live

Strategy II cost / Strategy I cost = 2/1

2. The overall strategy
 Priorities, costs, safety level to be achieved, ...

Since for economical reasons it is not possible to address all the buildings within the selected use (all the schools, hospital, etc), priorities have to be defined (building targeting).

Usually based on risk

Which indicator (economic damage, usability, non repairability, collapse, ...)?

Each indicator will provide a different list of buildings.
2. The overall strategy: Priorities

Problem 1

Which indicator (economic damage, usability, non-repairability, collapse,...)?

Each indicator will provide a different list of buildings

Problem 2

Very often the data needed to evaluate the risk are not known. This requires a long campaign of data collection that delay the priority list and the intervention works. This is usually not possible when the mitigation program has been established at political level and fund have been already allocated.

Problem 3

The buildings to be included in the program will never be based on the only risk assessment

The social, cultural and political context are always very important (a school in a depopulating municipality will probably not included in the program)

Nevertheless a “technical” list based on risk will be probably the first step towards prioritisation
3. The implementation: Administrative procedures and technical guidelines

Strategies are to be formulated into action programs

They have to be clearly understood by
- Building owners
- Government legislators
- Technical offices
- Building occupants

Usually a special committee is established to draft the administrative procedures and the technical guidelines

3. The implementation: Administrative procedures

They include:
- Requirements for funding
- Request for funding
- Deadlines
- Priorities for funding access (residence, presence of old people, low income people, ...)
- Maximum allowed contribution
- Type of controls

An efficient mitigation programs always starts with clear administrative procedures. Otherwise during the implementation someone may bring a lawsuit against the administration in charge of the program
3. The implementation: Technical guidelines

They include:
- Safety level to be achieved after the intervention
- Allowed interventions
- Calculations required (before and after the intervention,..)
- Documentation required (drawings, calculations, pictures,..)

Very often advanced professional training courses are organized for the professionals involved in the design of the intervention works
3. The implementation: Special offices devoted to the program

The existing administrative and technical offices are usually charged with the ordinary work

It is important, in order to speed up the program, to have special offices devoted to the implementation of the program and to the control of the design and works
Few items required for an efficient mitigation program (structural measures)

Aims: clear and realistic
Funding: assured in the long term, possibly require co-financing
Deadlines: short, once funds has been made available
Personnel: Administrative, Technical, Lawyer
Controls: in every phase of the program

Examples of recent normal time mitigation programs

• Seismic risk mitigation program for residential buildings in Umbria Region, Italy
• Seismic risk mitigation program for residential buildings in Sicily, Italy
• Italian national plan for school seismic risk mitigation
• California plan for Hospital seismic risk mitigation
• Italian National Plan for Seismic Assessment of Strategic and Relevant Buildings and Infrastructures
Seismic risk mitigation program for residential buildings in Umbria Region, Italy (Regional program)

Regional Law n. 18/2002
Financial contribution up to 50% of the cost of the structural works (and finishing correlated) with the maximum of 20,000 Euros for each dwelling

Allowed interventions: all able to reduce the seismic vulnerability of city blocks

Type of buildings: Masonry buildings only

Other requirements: private owners, mostly residential dwellings, taxes on the building correctly paid

Maximum % contribution for finishing: 25%

Funding increase
10% if the block contains more than one building
15% if the building is historical
10% if the building is located on an unstable slope
10% if the building has more than 10 owners

Maximum increase = 30%
Status of the program

<table>
<thead>
<tr>
<th>MUNICIPALITY</th>
<th>NUMBER OF REQUESTS</th>
<th>FUNDING (EURO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citerna</td>
<td>1</td>
<td>23.000,00</td>
</tr>
<tr>
<td>Città di Castello</td>
<td>28</td>
<td>894.500,00</td>
</tr>
<tr>
<td>Lisciano Niccone</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>Monte S.M. Tiberina</td>
<td>1</td>
<td>20.000,00</td>
</tr>
<tr>
<td>Montone</td>
<td>8</td>
<td>705.000,00</td>
</tr>
<tr>
<td>Pietralunga</td>
<td>40</td>
<td>1.472.000,00</td>
</tr>
<tr>
<td>San Gemini</td>
<td>10</td>
<td>484.000,00</td>
</tr>
<tr>
<td>S. Giustino</td>
<td>5</td>
<td>240.000,00</td>
</tr>
<tr>
<td>Umbertide</td>
<td>1</td>
<td>160.000,00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>94</td>
<td>3.998.500,00</td>
</tr>
</tbody>
</table>

Seismic risk mitigation program for residential buildings in Eastern Sicily, Italy (national program)

1908 Messina eqk
80,000 victims

Prevention program stated by law
120 million of Euro (Law 433/1991)

The territory includes:
- 4 provinces (Catania, Messina, Ragusa, Siracusa)
- 199 municipalities in seismic area
- 1 million dwellings
- 96 million of building floor area
- 2.4 million of inhabitants
Buildings can have access to funding according to a priority list based on the following indicator:

\[I_{RS} = N_{vt}P_c(V) \]

\(N_{vt} \) is the number of victims given the building collapse and \(P_c(V) \) is the collapse probability given the building vulnerability.

\(I_{RS} \) is then the expected number of victims and it is a social risk indicator (in comparison with the individual risk).

\(I_{RS} \) favors the highly populated buildings (large volume) in comparison with small buildings. The use of a priority list based on the marginal cost per saved life would have required the selection of the intervention prior the funding, complicating the access to funding.

Technical guidelines specifically drafted
- Minimum safety level to be achieved
- The works have to be completed within 3 years
- At least one resident in the building.

The financial contribution ranges from 225 Euro/m² to 280 Euro/m² including VAT and technical fees.
50% reduction for dwellings used as temporary housing.

In case of low income people, the contribution can be increased up to 450 Euro/m².

With this contribution it is expected that 5,000 dwellings can be strengthened corresponding to a floor area of 450,000 m² (total floor area in the area 96,000,000) (0.46%)
Italian national plan for school seismic risk mitigation

Law 289/2002, art. 80
Ministry of Infrastructure, Ministry of Education and Technical Support of Civil Protection Department
Recently all the Regions have been involved

Cost for the seismic upgrading of all the schools in Italy: about 13,000 million Euros (!!) (0.5% of GDP)

Prioritizing the schools, considering all the most vulnerable school in seismic zone 1 (higher hazard) and 30% of the most vulnerable in seismic zone 2, the needs reduces to 4,000 million Euros

Through loans to be paid for 15 years, 460 million Euro have been made available

First plan: 158 million Euro
738 schools
average cost of the intervention 210,000 Euro

Second plan: 295 million Euro
876 schools
average cost of the intervention 336,000 Euro

Schools, Vulnerability and Hazard in South Italy

<table>
<thead>
<tr>
<th>Vulner\Hazard</th>
<th>Zona 1</th>
<th>Zona 2</th>
<th>Zona 3</th>
<th>Totale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>950</td>
<td>2104</td>
<td>357</td>
<td>3411</td>
</tr>
<tr>
<td>Medium-Low</td>
<td>1616</td>
<td>3302</td>
<td>305</td>
<td>5223</td>
</tr>
<tr>
<td>Medium</td>
<td>323</td>
<td>2222</td>
<td>69</td>
<td>2614</td>
</tr>
<tr>
<td>Medium-High</td>
<td>1535</td>
<td>2546</td>
<td>561</td>
<td>4642</td>
</tr>
<tr>
<td>High</td>
<td>758</td>
<td>1596</td>
<td>337</td>
<td>2691</td>
</tr>
<tr>
<td>Total</td>
<td>5182</td>
<td>11770</td>
<td>1629</td>
<td>18581</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vulner\Hazard</th>
<th>Zona 1</th>
<th>Zona 2</th>
<th>Zona 3</th>
<th>Totale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>5.1%</td>
<td>11.3%</td>
<td>1.9%</td>
<td>18.4%</td>
</tr>
<tr>
<td>Medium-Low</td>
<td>8.7%</td>
<td>17.8%</td>
<td>1.6%</td>
<td>28.1%</td>
</tr>
<tr>
<td>Medium</td>
<td>1.7%</td>
<td>12.0%</td>
<td>0.4%</td>
<td>14.1%</td>
</tr>
<tr>
<td>Medium-High</td>
<td>8.3%</td>
<td>13.7%</td>
<td>3.0%</td>
<td>25.0%</td>
</tr>
<tr>
<td>High</td>
<td>4.1%</td>
<td>8.6%</td>
<td>1.8%</td>
<td>14.5%</td>
</tr>
<tr>
<td>Total</td>
<td>27.9%</td>
<td>63.3%</td>
<td>8.8%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

About 300 schools with return period lower than 100 years
About 5,000 schools with return period lower than 475 years
About 8,500 schools with return period of unusability lower than 75 years
About 1,000 schools with return period of unusability lower than 20 years

California plan for Hospital seismic risk mitigation

1994 - Senate Bill 1953

Plan to bring all the hospital in the compliance with the code (operational after major eqk) by the year 2030 (or abandoned)

Hospital buildings with high collapse probability cannot be used for acute care purposes after January 1, 2008. These buildings must be demolished, abandoned or retrofitted.

Estimated cost of the program 14 billion $ in 1990
No funding was provided by the State

http://www.oshpd.ca.gov/fdd/sb1953/index.html
Seismic performance categories for structural and non structural components

Once assigned to the building they will become public

56% of the hospital in California, according to OSHPD, do not meet the safety requirements

The cost of the program increased to 42 billion $ in 2002 (RAND estimate) and continue to increase due to increase in construction costs

In 2007, Senate Bill 306 authorizes qualified hospital owners, including city or county hospitals or hospitals that meet strict financial hardship criteria, to receive a seven year extension from the 2013 seismic safety deadline and instead require the hospitals to replace those buildings by January 1, 2020 (instead of 2030).
Italian National Plan for Seismic Assessment of Strategic and Relevant Buildings and Infrastructures

OPCM 3274/2003

100 million Euro in 2004
100 million Euro in 2005

Co-financing (30-50%) of seismic assessment (2 Euro/m3) and urgent strengthening works (150 Euro/m3) of critical buildings and infrastructures

Priority for seismic zone 1 and 2 construction period <1984

32.5% to State (Fire Brigades, Police, Motorways, ...)
67.5% to Regions (Regional, Provincial and Municipal bldgs)

The number of buildings built before 1984 to be assessed has been estimated around 75,000, of which 35,000 in zone 1 and 2 (Not considering infrastructures, lifelines, cultural assets, commercial and industrial buildings)

Considering 200 million Euro, about 5,700 Euro were available for each assessment. Some prioritization has to be introduced
Distribution between Assessment and Strengthening
(State & Regions, 2004-2005)

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Assessment</th>
<th>Strengthening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>6,718</td>
<td>97.0%</td>
<td>3.0%</td>
</tr>
<tr>
<td>Cost</td>
<td>380 Meuro</td>
<td>38.1%</td>
<td>61.9%</td>
</tr>
</tbody>
</table>

3% strengthening → 62% of cost

Cost of strengthening / cost of assessment = 50 / 1

Use distribution in the assessment
(State & Regions, 2004-2005).
Difficulties in the implementation

- Lack of prior knowledge on existing buildings and infrastructures
- Delay in the activation of the Regions
- Regional and State priorities sometimes improvised
- Lack of technical guidelines (different in each Regions)
- Professionals not skill on existing buildings (capacity sometimes is null)
- Errors on volume and identification (same buildings included twice in the plan)