A Risk Management Framework for Emergency Management

Risk Management in Civil Engineering Advanced Course November 2008

John R. Harrald, Ph.D Professor Emeritus The George Washington University Institute for Crisis, Disaster, and Risk Management (www.gwu.edu/~icdrm)

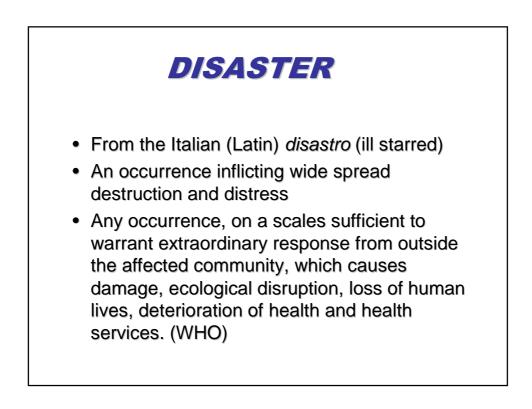
Professor Virginia Polytechnic Institute and State University Center for Technology, Security, and Policy (www.ctsp.vt.edu)

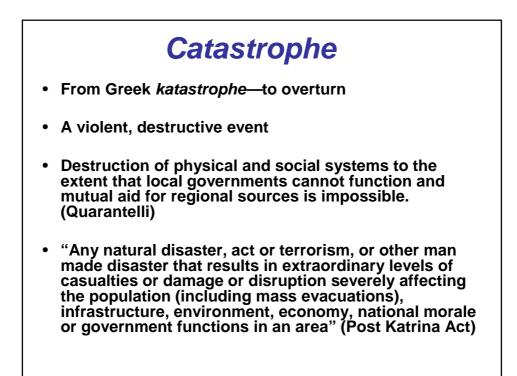
Executive Editor Journal of Homeland Security and Emergency Management (www.bepress.com/jhsem)

National Preparedness Vision

A NATION PREPARED with coordinated capabilities to prevent, protect against, respond to, and recover from all hazards in a way that balances risk with resources and need.

- The National Preparedness Guidelines identify three fundamental questions that must be addressed to achieve a Nation prepared.
- How prepared do we need to be?
- How prepared are we?
- How do we prioritize efforts to close the difference?


HAZARD


- Based on the Arabic *al zahr* (dice)
- A source of potential loss or danger, a peril

HAZARD A condition with the potential for the community or environment The hazard is the potential, the disaster is the actual event (Drabek)

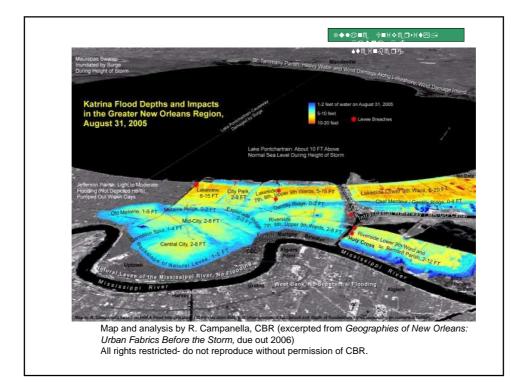
EMERGENCY

• AN UNEXPECTED SITUATION OR SUDDEN OCCURRENCE OF A SERIOUS AND URGENT NATURE THAN DEMANDS IMMEDIATE ACTION

Emergencies, Disasters, and Catastrophes				
Emergencies	Disasters	Catastrophes		
Impacts Localized	Impacts Widespread, Severe	Extremely Large Physical and Social Impacts		
Response Mainly Local	Response Multi- Jurisdictional, Intergovernmental, But Bottom-Up	Response Requires Federal Initiative, Pro-Active Response		
Standard Operating Procedures Used	Disaster Plans Put Into Effect—But Challenges Remain	Massive Challenges Exceed Those Envisioned in Standard Plans		
Vast Majority of Response Resources Are Unaffected	Extensive Damage to, Disruption of, Key Emergency Services	Emergency Response System Paralyzed at Local and Even State Levels		
Public Generally Not Involved in Response	Public Extensively Involved in Response	Public Extensively Involve in Response		
No Significant Recovery Challenges	Major Recovery Challenges	Cascading Long-Term Effects, With Massive Recovery Challenges		

Comparing Catastrophies

Hurricane Katrina


- 155,000 Sq. Km impacted
- 1,330 deaths
- 700,000 displaced people
- 1,000,000 evacuated.
- 300,000 homes unihabitable
- 250,000 sheltered
- \$96 billion damage
- 118 M cubic yards of debris

Sichuan M7.9 Earthquake

- 100,000 Sq Km impacted
- 68,146 deaths, 17,516 missing
- 374,131 injured
- 5-11 1M people displaced
- 216,000 buildings destroyed
- 803 dams damaged

RISK Definition

"A measure of potential harm that encompasses threat (hazard), vulnerability, and consequence. Risk is the expected magnitude of loss due to a terrorist attack, natural disaster, or other incident, along with the likelihood of such an event occurring and causing that loss."

NIPP 2006

Risk Management Challenge Potential Catastrophic Events in US

- · Severe earthquake in populated area
- West Coast, Hawaii, Alaska Tsunami
- Gulf Coast, East Coast Hurricane
- Dam failures in LA, Columbia River
- Levee failures—Mississippi, Sacramento rivers
- Pandemic Outbreak
- Biological Attack
- Chemical attack or accident
- Nuclear Bomb in US city
- Cyber attack

<u>Risk Perception</u> is biased by low probability events hat have actually occurred. <u>Risk Analysis</u> must also identify and evaluate the risk of rare events that have not yet happened.

A RISK-BASED APPROACH

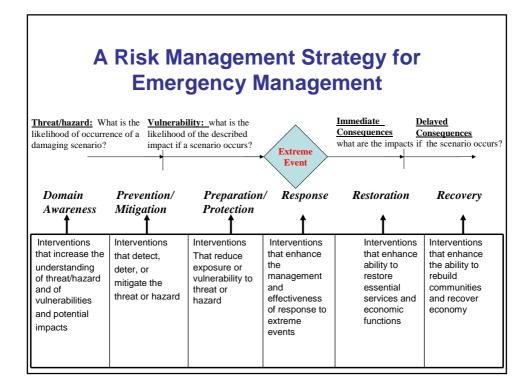
"We need to adopt a risk-based approach in both our operations and our philosophy. Risk management is fundamental to managing the threat, while retaining our quality of life and living in freedom. Risk management must guide our decisionmaking as we examine how we can best organize to prevent, respond and recover from an attack."

Remarks as prepared for Secretary Michael Chertoff U.S. Department of Homeland Security George Washington University Homeland Security Policy Institute (3/16/05)

Decisions supported by Risk Management

- Strategic—which policies best protect the nation from natural hazards or terrorist attack?
- Programmatic—which programs will effectively implement strategies?
- Funding—how should funding be allocated between programs, geographical areas?
- Tactical—which specific risk management interventions are cost effective?

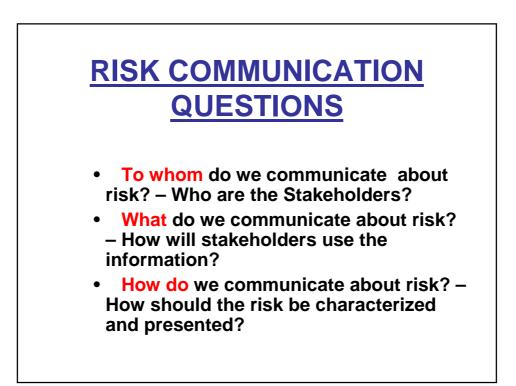
U.S Department of Homeland Security Strategic Goals Define an all Hazards, Risk Management Approach


Awareness: Identify and understand threats, assess vulnerabilities, determine potential impacts

Prevention: Detect and deter and mitigate threats

Protection: Safeguard our people and freedoms, critical infrastructure and the economy.

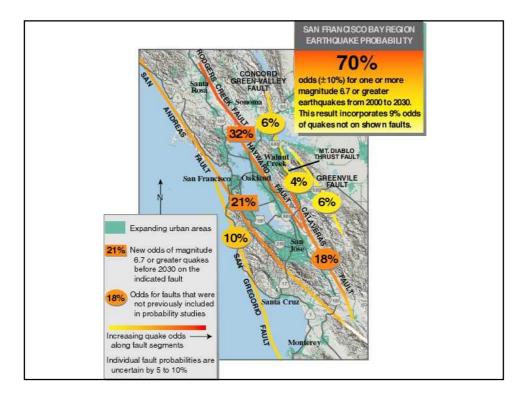
Response: Lead, manage and coordinate the national response to extreme events

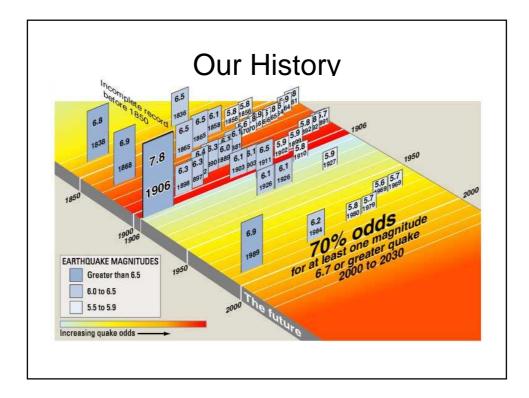

Recover: Lead national, state, local and private sector efforts to restore services and rebuild communities

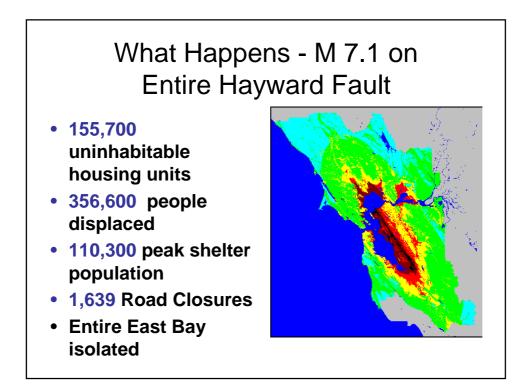
Awareness and Preparedness

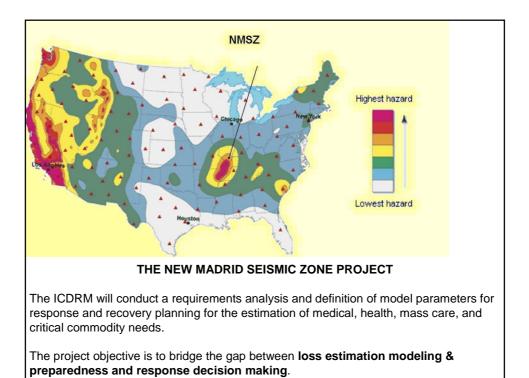
Key Tasks

- Risk communication
- Risk characterization
- Translation or risk information to appropriate protective actions and operational requirements

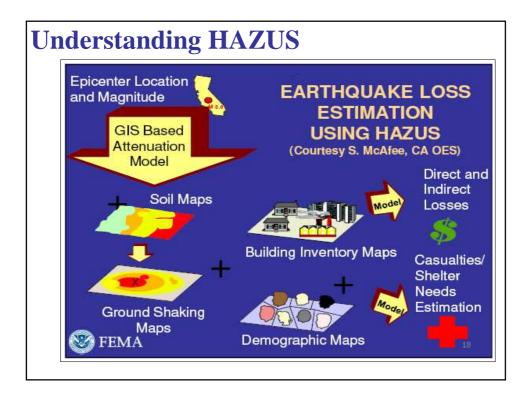


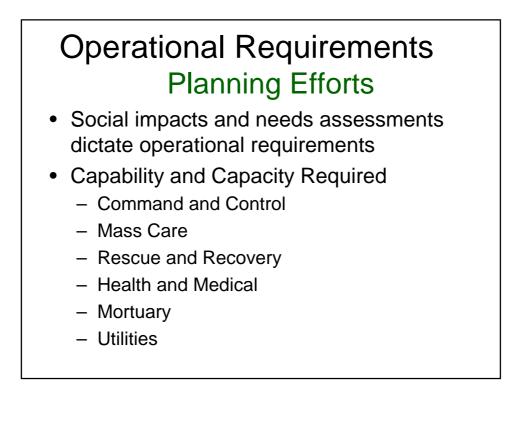

RISK CHARACTERIZATION

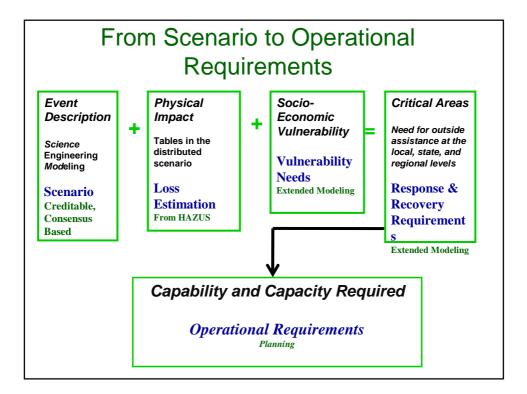

The way the nation handles risk often breaks down at the stage of "risk characterization" when the information in a risk assessment is translated into a form *usable by a risk manager, individual decision maker, or the public.*

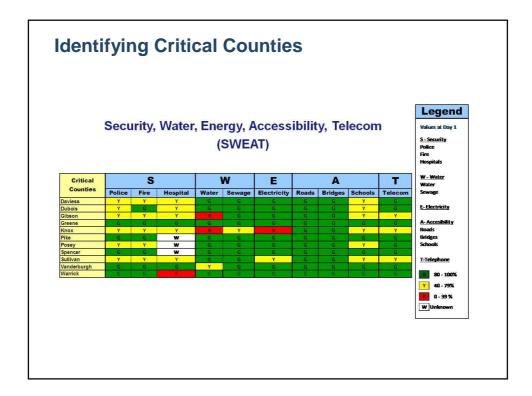

Risk characterization is not only a summary or translation of technical results, it should be a *decision driven activity* directed toward informing choices and solving problems

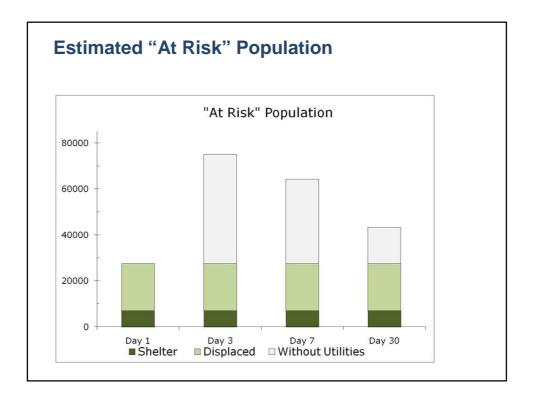

National Research Council 1996 Understanding Risk: Informing Decisions in a Democratic Society





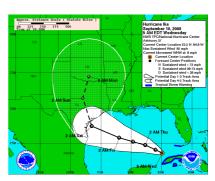


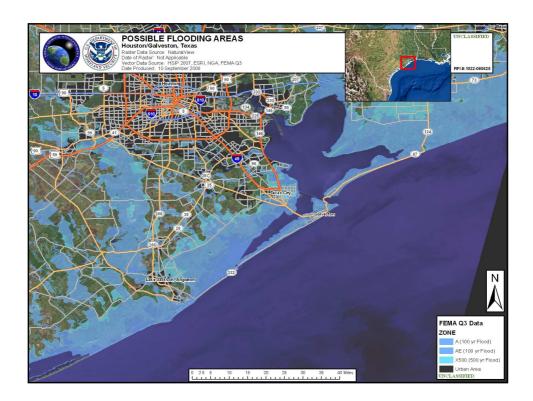


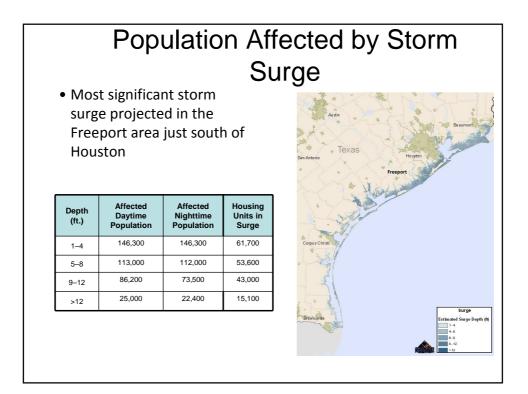


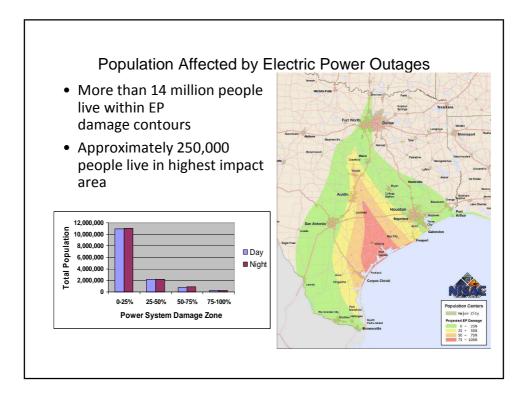
Build	ing St	tock D	ama	ge	Approximately 16		v ,		
County		omplete amage	mo	least derate mage	million in the stat moderate damag allocation of thes	e. The ch e damage	art below d building	/ shows t js per co	ne
Knox		16		19%		lings by County	etery Damageo		derburgh
Gibson		15	%	17%				Ma	rion
Vanderburg	h	20	%	8%	14%			Knc Knc	
Posey			%	6%	4%		27%	Gib	
Sullivan			%	3%	4%			Vig	o ndricks
Vermillion			%	3%	4%			Joh	
Vigo			% %	3%	5%			Pos	ey
				370				= All	other countie
Damage levels for all	other countie	es are less tha	a 3%o		12%		17%	Elk	nart
								Pos	ev
						15%		All	other counties
	sholde with	hout Potel			erruptions	lousehold	s without	Power	
% of House		nout i otai					Day 3		D 00
% of House		Dav 3	Day 7	Day 30	County				
County	Day 1 98%	Day 3 97%	Day 7 97%	Day 30 85%	County Knox	Day 1 73%	47%	Day 7 23%	68%
County Knox	Day 1				County Knox Sullivan	73% 46%		1	
ALC: DE LA SOLAR DE LA COMPLEX	Day 1 98%	97%	97%	85%	Knox	73%	47%	23%	

"At Risk" Populations HAZUS estimates displaced population based solely on structural damage to residential buildings. Shelter seeking population is a subset of the displaced population based on demographic socio-economic characteristics such as ethnicity and income level. The "at risk" population is composed of the displaced population and the following estimated populations: Households without electricity and/or water for an extended period of time (> 3 days). Efforts are ongoing to include estimates of Pre-event homeless Institutions (dormitories, nursing homes, etc.) Tourists

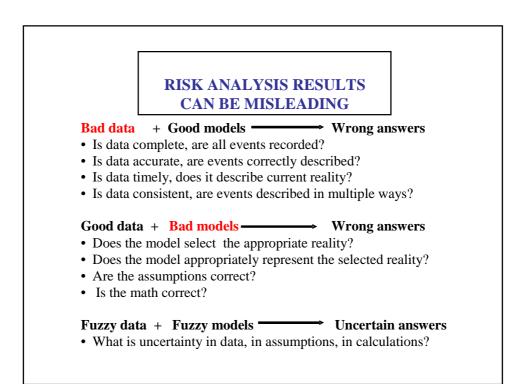


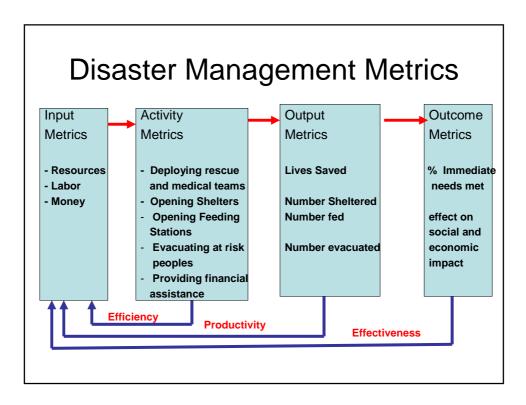



Storm Characteristics


Advisory 37

- Category 3 storm
- Landfall Projected at 0500 CDT 13 September 2008 approximately 8 Miles SE of Seadrift, TX
- Maximum Sustained Winds 120
 mph with gusts to 150 mph
- Tropical storm force winds up to 175 Nautical Miles (201 miles) from center of circulation
- Hurricane force winds up to 35 Nautical Miles (40 miles) from center

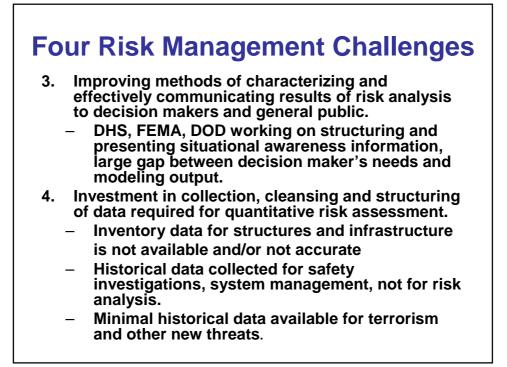


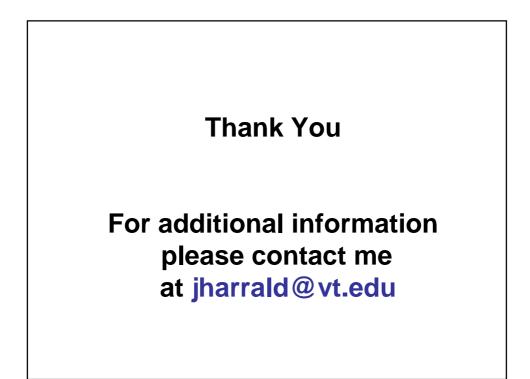

	General Population Shelters						
	National Shelter System (NSS)						
	04 SEPT 08 02:00 am EDT						
	State	Total Shelters	Total Populati on	Evacuati on capacity	Used % Capacity		
1	Alabama (R4)	52	10,932	22,571	48.43%		
2	Arkansas (R6)	27	1,063	5,925	17.94%		
3	Florida (R4)	3	70	1,300	5.38%		
4	Georgia (R4)	6	671	2,108	31.83%		
5	Indiana (R5)	1	0	350	0.00%		
6	Kentucky (R4)	1	1,432	3,000	47.73%		
7	Tennessee (R4)	37	5,655	13,205	42.82%		
8	Oklahoma (R6)	3	1,636	13,055	12.53%		
9	Mississippi (R4)	62	6,517	21,536	30.26%		
10	Texas (R6)	31	1,639	9,259	17.70%		
11	Louisiana (R6)	49	13,356	28,222	47.32%		
11	CURRENT DAY	272	42,971	120,531	35.65%		

Issues in using Risk Modeling in Support of Emergency Management

- Models must be appropriate representation of reality
- Data and/or expert judgment must be available to populate models
- Metrics must be developed that allow evaluation of outcomes and determination of response and recovery objectives

Existing Disaster Metrics						
Event	Physical I	mpact	Socio-Economic Impact			
Hurricane -Wind Speed -Category -Storm Surge		amage acility damage ture damage	Deaths Displaced people Injuries Insured losses Estimated losses			
Earthquake -Magnitude -Intensity -Ground Acceleration -Ground Velocity		more precis	scribing event are se than metrics physical impact.			
Tornado -Saffer-Simpson -Wind Speed Flood		response a are incomp	nomic impacts drive nd recovery—metrics lete and inadequate not been linked to npacts			
-Flood Stage -Water Height		-				




What is a Successful Disaster Response? (measures of outcomes)

- Claims for Federal disaster assistance payments are process rapidly and applicants are not forced to wait extended periods of time to apply for assistance
- Few if any disaster victims remain stranded in lifethreatening situations or without urgent medical attention for more than a few hours
- Few if any disaster victims are left without adequate shelter, food, or water for more than twenty four hours
- Individuals seeking to evacuate are able to do so
- Electricity, water, and communications utilities are restored to the vast majority of people in the affected area within twenty-four to thirty six hours.

Source: James Miskel Disaster Response and Homeland Security

Four Risk Management Challenges 1. Developing appropriate scenarios and risk models for rare, extreme events. Specifying complete set of event scenarios Estimating scenario frequency distribution of scenarios Estimating long term consequences Identifying potential risk management interventions Avoiding modeling what we have already experienced Developing more rigorous methods of qualitative 2. risk assessments. DHS, National Labs, US Army Corps of Engineers, US Coast Guard, Transportation Security Administration, University Research Centers all working on improving qualitative methods, particularly for terrorism threat

